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Formal model of neuron (McCulloch & Pitt)

weights bias
—
) wy ' activation
I output
T2 wa 1 N wpz, —b>0
input (binary) > 0’ %7\,1 b0 Yy
) n=1 Wn Ty — S
N wN

https://en.wikipedia.org/wiki/Artificial_neuron

6-4



Artificial neurons

-1 Definition: An artificial neuron with weights w = (wy, ..., wy) € RV, biasb € R
" lb and activation function o : R — R is defined as the function f : RY — R
—ena N
-0 f(w)—a(wTac—b)—a(anxn—b>.
wN ne1

m Examples of activation functions

1, >0
0, <0

)

m Threshold Logic Unit (Heaviside): TLU(z) = (McCullogh & Pitt 1943; Rosenblatt 1957)

1 (Rumelhart 1986, ...)
1+e®

ﬁg&ﬁgﬁ o 1 m Rectified Linear Unit: ReLU(z) = 24 = max(0, z)

m Sigmoid function: o(z) =

m And variants .....

Neural network architectures for image processing

Neural networks are constructed from the composition of basic modules that can be chained at will.
Convolutional neural networks (CNN), in particular, are inspired by the structure of the primary visual cortex.
They have an architecture that is well suited for image processing.

Skip connection

| @

m Basic modules I ‘ .
= Multi-channel convolution operators (filters) ‘ o ‘

spatial dimension : 512x 512

= Pointwise nonlinearities

(eam 128128 256128 '128)

3
| | 256 x 256 I | | J

7256 256

[mx
128x128 I)I I

= Pooling: linear combination, flattening, sub-sampling, ...

Some modules—in particular, the filters—are adjustable. R
The parameters of the CNN (weights) are set during the training procedure. 252 il - Txteom,

m Training (not covered in this chapter)
= Requires a comprehensive collection of reference input-output pairs.
The larger the training set, the better!
= Formulated as a large-scale optimization problem
= Solved using some form of stochastic gradient algorithm (ADAM)

= Requires a lot of computational ressources (GPU)



Basic Components of CNNs

= Operator-based formalism
= Composition
= Pooling

= Continuity and stability estimates

Unser: Image processing

Operator-based formalism

Generic operator T : X — Y where X and ) are complete normed vector spaces.
Vee X: y=T{z} €)Y

m General multivariate nonlinear operator (for image patches)
T:RM RN

m Pointwise nonlinearity = activation function of neuron

Tacti : R =R with Tau{z} =o(x+0b), beR % %@
O

m General multivariate linear operator (for fully connected layer)
Ty : RM - RN with Ty {x} = Wx where W ¢ RV*XM

m Image-to-image operator
T: EQ(Zd) — gg(Zd)

Most operators of interest are shift-invariant
Example: Tpsi{f} =h=*f with h=Trsi{0[:]} (discrete convolution)
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Convolutional layer

m Patch extraction operator: /5(Z%) x Z% — RM with M = #W : =t
Vect(f[-], k) = fwlkl = (f[k — ko])koew

. . f
m Convolution layer : ¢5(Z%) — ¢Y(Z?) with N channels = feature maps N channels feature maps)

convolution masks pointwise nonlinearities
Shared operator Tpaten : R — RY
wi o1:R—=R
Tpaten (fiw[K]) = o (W fy[k]) where W =] : and o =
wh oy :R—=R

Typically: 0, (z) = ReLU(z — b,,)
Implementation of N channel convolution layer:

o1 (k% )1K])
; = Tyutcn(Frv k]) = o (W iy [K])
o ()

6-9

Vector-valued convolutional layer (tensor)

Input feature map: f[-] = (f1[],---, fx [])

m Tensor patch extraction: /)" (Z%) x Z¢ — RM*Nt with M = #W

Tensor(f[-], k) = F[k] = (fz [k - kO])kOEW, ie{l,....,N1} N1 input Nz channels
channels feature map

m Vector-valued convolution layer : £5 (Z4) — 022 (Z.%)

Shared operator Teensor : RMxN: = RN2 convolution tensors pointwise nonlinearities
wi o :R—=R
Tiensor(F[k]) = o (WF[k]) where W= : and o = :
WITV2 on, :R—=R

- a’((H « f)[k]) with H[] = Ny x N; array of filters



Convolution of vector-valued images

fil]
Input feature map: f[-] = :
Inl]
Ni t M ch |
hial]  hiz2l] ... hin[] channels feature map
Matrix-valued filter: H[-] = :
haal] higl] oo hunw

m Vector-valued filterbank: ¢ (Z%) — (5 (Z%)

(hig* fu)l]+ (hig* fo)[-]+ -+ (hin * fn)[]

Hx* f)[] = :
(hara * fu)[] + (hara * fo)[ ] + - + (har, v * fN)]]

Composition

Series of (nonlinear) operators T, : Xy — ), where X, and ), are complete normed vector spaces.

Hypothesis: T, and T,_; have compatible domain and range;i.e., X; = Vy_1

m Composition of Ty : X} — Xy and Ty : Xy — A

TooTi: X — Xy with TyoTi{z} =T{T,{z}}

m Deep neural network

fageep(®) = (0 0AL0o_10---0090A200710A)(x)

= Affine layers A, : RVe-1 — RN
Ay(x) = Wiz + b, with trainable weight matrix W, € RV¢*Ne-1 gand bias b, € RV

® Pointwise nonlinearities oy : RNt — RN¢
o¢(x) = (o(21),...,0(zn,)) with common activation fonction o : R — R



Composition: Properties

m Preservation of linearity (affiness)
A1 ZXI—>W1X+b1 andA2 :y»—>W2y+b2

m Preservation of convolutional structure

T; and T, are LS| with impulse responses h1, hy € ¢1(Z4)
= TooTy:fr—=hxf with h:hg*hleél(Zd)

Application: Construction of larger receptive fields

m Preservation of continuity

The composition of two continuous functions is continuous

Pooling

m Down-sampling: |,,{f}[k] = f[mk]

m Max pooling: RY — R

u — max(u) = max(uq, . .

<+«— “Weasle”

S UN)

m Softmax: RV — RY (transforms output of CNN in “probabilities”)

exp(ug)
p_) [ . B A—
R S e
m Up-sampling
k=
b fyig = { 0 k=
0, otherwise

m Up-sampling with repetition

Tm{f}E] = flk/m]

= Ajo0A;:x— (W2W1)X + (b2 + W2b1)

Skip connection

U-net

1 64 64 64 < # of channels 12864 64 1 1
NoX

5

(647 128128

[ | | 256 %256

‘n 256 256
128x 128\ I I I
£ 512

(256"
saxeq M-I

spatial dimension : 512x 512




Continuity requirements
Generic operator T : X — )Y where (X, ||-||x) and (), ||-||) are complete normed vector spaces.

Definition
The operator T : X — Y is continuous if lim; T{z;} = T{lim; z;} = T{x} for any sequence

(x;)ien that is converging in X with lim; x; = =

Definition
The operator T : X — ) is Lipschitz continuous if there exists a constant L > 0 such that

||T{.73‘1} — T{J]Q}Hy < L||.’L’1 — .73’2”)( for any xrp,xs € X.

m Lipschitz constant
Lip(T) = L where L is the smallest constant such that the Lipschitz inequality holds.

To avoid instabilities, all modules of a CNN should be Lipschitz continuous.
This implies that they are a.e. differentiable, which is desirable for training with backpropagation.

Counterexample: TLU networks are discontinuous, and therefore very hard to train unless the

architecture is shallow (perceptron).

Lipschitz constant of primary modules

m Pointwise nonlinearity
oc:R—R where o isdifferentiable

d
Lip(c) = sup (@) =o'l (cf. Mean Value Theorem) |/
zeR dz
} T
Example: Lip(ReLU) = sup,cp |u(z)| =1 Heaviside

m LSl operator (convolution channel)

TLSI(f) =hxf whereh €/l (Zd)

Lip(TLst) = Hmax = sup  |[H()| < [|hlle,
we(0,n]4

Justification (Parseval)
1 " . 2
s f—hwglZ, = |hx (f — )2, = / H(&)[2 [F(e*) — G(e*)[* dw

2m)% Jio,m)e

Hr2nax jw jw |2 2 2
< (27T) 0,74 ‘F(e ) - G(eJ )‘ dw = Hmax“f - g||£2

—

ISH




Lipschitz constant of primary modules (cont’d)

m Linear (resp. affine) transform
Ty, : RM 5 RN with  x+— Ax (linear)

or x> Ax + b (affine) where A ¢ RMXN b ¢ RM

Lip(Tyin) = sup ||Ax|j2 = p(A) (spectral norm = largest singular value of A)
lIx[l2<1

m Imposing Lip-1 layer by spectral normalization

Tnormal{x} = ﬁAX

Estimation by power method: For k =0, ..., K
_ 1 T
Uk = TATAw A (At)

Upon convergence, u = limy, uy, is the dominant eigenvector of ATA..

Finally, p(A) = v/(Au)T(Au)

Stability and combination of modules

m Composition — T To =

Lip(T1) = L1 & Lip(T2) = L2 = Lip(Ty 0 Ty) < Lol
Vf,g € X || TooTi{f} = Tao Ti{g}||y, < Lo||[T1{f} = Ti{g}||y, _x, < LoLallf = gllx,

Deep neural network with Lip-1 activations (e.g., ReLU) : 1

( Lip(o¢) Lip Az))

Er«

facep(x) = (0L oApoop 10---0030A000A)(x) = Lip(faeep) =
=1
= Deeper networks tend to be less stable

m Linear combination
I

oty (alTl + GQTQ){.%}
Lip Z Z |a;|Lip(T (by triangle inequality) x

i=1 a2T2
m Parallel feature maps
T1 Tl —

Tl{l‘}
T=| : |:6(2% — 5 (29 :

Tn Lip(T)SM§L1+-..+LN




CNNs in Practice

= Deep learning pipeline
= Denoising

= Segmentation

Unser: Image processing

Deep Learning Pipeline

Training

Pairs of images

raw annotate

v

Trained model

Inference

Trained lmage

|
raw

JE—

Prediction




Denoising: “Handcrafted” ancestor of Resnet

Ground-truth

HP

—_ >

Low-pass
filter

LP

noise estimator

Input LP Denoising
RMSE | 17.30 18.19 12.08
PSNR (21.89 dB|21.45dB| 25.01dB

with respect to ground truth

Input

noisy image

Deep CNN for residual image denoisng

Input -

Conv 3x3

wW
)

RelLU

\

Conv 3x3

[
N

RelL.U

\

Conv 3x3

@
N

RelLU

\/

Conv 3x3
RelLU
Conv 3x3

W
N
wW

N

RelL.U

\

= Subtract

-

Datasets

DnCNN architecture (residual)

Training CNN

e 20 images (25%) in validation set

e 37’601 parameters (weights and biais)
e Loss function is the MSE

e 30 epochs, batch_size = 16, Ir = 0.001
¢ Global normalization 0/1

0.01

0.008
0.006
0.004

0.002

— Training loss
~— Validation loss

20

40

60

80

Output

denoised image
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Layer Shape Parameters

Input 384 x384x1 0
Conv2D 3x3 + b, ReLU | 384 x 384 x 32 320
Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9'248
Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9'248
Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9'248
Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9'248
Conv2D 3x3 + b, ReLU 384 x384 x 1 289

Subtract 384 x 384 x 1 0
Total 37'601




DNnCNN architecture

First conv layer:

Layer Shape Parameters

Input 384 x 384 x 1 0

Conv2D 3x3 + b, ReLU | 384 x 384 x 32 320

Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9248

N channels (feature maps) Conv2D 3x3 + b, ReLU | 384 x384x32 | 9248

Number of learnable parameters: (3 X 3) + 1 (bias) per output channel Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9248

Conv2D 3x3 + b, ReLU | 384 x 384 x 32 9248

Internal conv layers: Conv2D 3x3 + b, ReLU | 384 x 384 x 1 289
Subtract 384 x 384 x 1 0
Total 37601

N input M channels
channels feature map

Number of learnable parameters: (3 X 3) X 32 + 1 (bias) per output channel

Comiation )

Gaussian noise o = 20

260

N A Ao A N

NGV ARG WA

W/

156 W
104 ’

52

'
.-
0
-

-- Ground-truth — Noisy

— Denoised

0 4 8 12 16 20 24

Neuschwanstein

Noisy image Prediction

Clean image Noisy image Prediction Gaussian Median
Filter Filter

28 32 36 40

HighPass+
SoftClipping



Neuschwanstein

Clean image Noisy image 15.36 dB High-pass filter Resnet (100 epochs)
Ground-truth Additive Gaussian noise Soft Clipping 3 layers, 16 channels
19.97 dB 20.91 dB

Neuschwanstein Neuschwanstein Neuschwanstein Neuschwanstein

Gaussian filter Median filter Resnet (200 epochs) Unet (100 epochs)
o=1 radius = 3 5 layers, 32 channels 3 Pooling steps, 32 channels
18.23 dB 18.45dB 21.01dB 20.99 dB

Segmentation: “Handcrafted” texture discriminator

DCT filters (3x3) . - . . ‘ { I H .:.

N filters  nonlinearity aggregation

' WH

00O O




Popular CNN architecture for image segmentation

U-net introduced by Ronneberger in 2015 for biomedical image segmentation

output
segmentation
map

ssaxzes W

256 128

=>conv 3x3, ReLU
copy and crop

§ max pool 2x2
4 up-conv 2x2
= conv 1x1

‘ Winner of ISBI 2015 cell tracking challenge
Architecture

1. https://arxiv.org/abs/1505.04597
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U-Net Architecture Eave Shapclg|Rerams
For & - ) Input 512x512x1 0
or "semantic” segmentation Conv2D 3x3 512x512x32 320
512x512x32 512x512x32 Conv2D 3x3, Activation 512x512x32 9248
- ~ MaxPooling2D 256x256x32 0
% ) . . ) ) @ X —
N = =) Sklp connection T S ol & o X N Conv2D 3x3, Activation ' 256x256x64 18496
5 3= > o o = I
X c 8 g:’ s 5 % 5 & 5 % Conv2D 3x3, Activation 256x256x64 36928
N (&) [aV]
5 o o o ° 5 MaxPooling2D 128x128x64 0
1) [te]
Conv2D 3x3, Activation | 128x128x128 73856
@ @ e Conv2D 3x3, Activation | 128x128x128 | 147584
% fé ‘ ' MaxPooling2D 64x64x128 0
@ ) - ) ) —
:qg -5 3 (‘>§ 3 8 :5)< 3 (3; 3 é ’ Conv2D 3x3, Activation 64x64x256 295168
B = 2 = 2 5 > = 2 = 2 g Conv2D 3x3, Activation 64x64x256 590080
X O o} o Q
§ o o © o o % e . Up-conv 128x128x128 | 131200
519x519x1 5195192 Concatenate 128x128x256 0
x512x xo12x
! Conv2D 3x3, Activation | 128x128x128 | 295040
Graylevel 2¢l —
image 8 g 0: background Conv2D 3x3, Activation 128x128x128 | 147584
polll 2 @ P 2 2 Aoy : Up- 256x256x64 32832
% & o\ & o 5§ & 2l&8 2 % 1: cell p-conv X256x
S > 2 D — S > 2 > 2 3 Concatenate 256x256x12 0
A o o o oc T
& 8 3 ° 8 8 & Conv2D 3x3, Activation |256x256x64 73792
C\I C\I
- - Activation 256x256x64 0
@ @ Conv2D 3x3, Activation 256x256x64 36928
© © @ Max pooling Up-conv 512x512x32 8224
@ 2 5 g 5 3 Concatenate 512x512x64 0
3 2 = —> z = 3 U Conv2D 3x3, Activation 512x512x32 18464
-conv
¥ 8§ = 8 T X P Conv2D 3x3, Activation 512x512x32 9248
< O (&) <
© ©
Conv2D 3x3 512x512x2 66

Total 1'925'058




1

Q Ground-truth
Annotated

Raw input image 0 test set

Datasets

® (66 graylevel images (1 channel)
® 66 manually annotated images, 2 classes

Training CNN

® 66 annotated images / 25% for validation
* 1’925°058 parameters (weights and bias)
e |oss function is the binary cross entropy

e 100 epochs, batch_size = 16, Ir = 0.001
loU = 0.91 (Jaccard)

0.8
0.6

— Training loss
— Validation loss

0.4
0.2
0
0 10 20 30 40 50 60 70 80 920100
Probability @ Prediction of Results of segmentation
of class 1 class 1 GT (green) Pred (red)

CONCLUSION: The Pros and Cons of CNNs  ancores au:aouting sery 2 monn:
= Advantages of (deep) CNNs |

Are sufficiently flexible to implement most image-processing tasks
Can benefit from hardware acceleration (GPU)
Performance of deep CNNs is often spectacular
Once trained, they are very fast to deploy (inference)

= Downsides of CNNs T e
; . L.  Decemoer )
Require huge amounts of data and computation for training PNA
. e
ming in imad \
ilities °:‘§e§§ :,eoient'\a\ costs 01 N
ction anc

While the individual components are simple, _
the global behaviour is poorly understood = lack of guarantees On insta

reconstr¥
Training and fine-tuning is fastidious “Graduate-student descent ....” N

No free lunch: Trained CNNs are very task/data specific

Can behave erratically — lack of robustness, subject to adversarial attacks

= How the new trend benefits from the techniques of “traditional” IP

Deeper understanding of modules Suggestion of leaner and more robust architectures



