
Image Processing I

December 2022

Figure 2: Diagram of a minimal width neural network R ! R with L = 5
layers of active neurons (blue circles) and node descriptor (1, 1, 1, 1, 1).

Figure 3: Diagram of a fully connected neural network R2 ! R2 with L = 3
layers of active neurons (blue circles) and node descriptor (2, 4, 3, 2)

2.1 Structure of neural network

Notation: input vector x = z0 of size N0 (number of input features). Output
vector z = zL of size K = NL (number of classes) of a neural network with
L layers.

State of network within hidden layer `: variable z` of size N`.
Initialization: z0 = x
Layer-to-layer propagation for ` = 1, . . . , L with intermediate input vari-

able z`�1 2 RN`�1 , output variables y`, z` 2 RN` and linear network param-
eters W` 2 RN`�1⇥N` and b` 2 RN` .

y` = W`z`�1 + b` (1)
z` = max(y`, 0) (2)

The first step described by (14) is the application of a linear transformation
to the output z`�1 from the previous layer followed by the addition a bias b`.
The transformation is encoded in the matrix W` of size N` ⇥N`�1. Note
that the bias may also be encoded in terms of linear weights that are applied
to a constant input common to all layers—structurally, this is equivalent to
augmenting the matrix W` by one line and including the (dummy) constant
1 as an additional component of z`. The bottom line is that this part of
the processing is intrinsically linear and parametrized by the parameters W`

and b`, which are learned during the training of the network.
Equation (5) describes the so-called rectifier unit (ReLU), which amount

to transmitting the coefficients that are positive and suppressing the oth-
ers. This module is essential since it constitutes the non-linear part of the
architecture.

2

Chapter 6
Convolutional neural
networks
Prof. Michael Unser, LIB

6-Unser: Image processing

OUTLINE
■ Introduction
■ The (deep) learning (r)evolution in signal processing
■ Artificial neurons
■ Neural networks architectures for image processing

■Basic Components of CNNs
■ Operator-based formalism
■ Composition properties
■ Pooling
■ Continuity properties

■CNNs in Practice
■ Deep learning pipeline
■ Denoising
■ Segmentation

2

6-

The (deep) learning (r)evolution in image processing

3

Special issues

…

Flurry of new textbooks on neural networks

…

6-

Formal model of neuron (McCulloch & Pitt)

4

https://en.wikipedia.org/wiki/Artificial_neuron

X
8
<

:
1,

PN
n=1 wnxn � b > 0

0,
PN

n=1 wnxn � b  0

biasweights

activation
output

input (binary)
...

x1

x2

xN

...

y

8
>>>>>>>><

>>>>>>>>:

w1

w2

wN

�b

6-

Artificial neurons

5

(McCullogh & Pitt 1943; Rosenblatt 1957)

(Rumelhart 1986, …)

And variants

Rectified Linear Unit: ReLU(x) = x+ = max(0, x)

Examples of activation functions

Threshold Logic Unit (Heaviside): TLU(x) =

8
<

:
1, x � 0

0, x < 0

Sigmoid function: �(x) =
1

1 + e�x

Definition: An artificial neuron with weights w = (w1, . . . , wN) 2 RN , bias b 2 R
and activation function � : R ! R is defined as the function f : RN ! R

f(x) = �
�
wTx� b

�
= �

NX

n=1

wnxn � b

!
.

w1 b

-1

wN

...

w2

6-

Neural network architectures for image processing

6

Some modules—in particular, the filters—are adjustable.
The parameters of the CNN (weights) are set during the training procedure.

Training (not covered in this chapter)
Requires a comprehensive collection of reference input-output pairs.
The larger the training set, the better!

Formulated as a large-scale optimization problem

Solved using some form of stochastic gradient algorithm (ADAM)

Requires a lot of computational ressources (GPU)

Neural networks are constructed from the composition of basic modules that can be chained at will.

Convolutional neural networks (CNN), in particular, are inspired by the structure of the primary visual cortex.
They have an architecture that is well suited for image processing.

Basic modules
Multi-channel convolution operators (filters)

Pointwise nonlinearities

Pooling: linear combination, flattening, sub-sampling, . . .

Unser: Image processing

Basic Components of CNNs

■Operator-based formalism
■Composition
■ Pooling
■Continuity and stability estimates

76-

6-

Operator-based formalism

8

Generic operator T : X ! Y where X and Y are complete normed vector spaces.

8x 2 X : y = T{x} 2 Y

Example: TLSI{f} = h ⇤ f with h = TLSI{�[·]} (discrete convolution)

General multivariate nonlinear operator (for image patches)

T : RM ! RN

Image-to-image operator

T : `2(Zd) ! `2(Zd)

Most operators of interest are shift-invariant

Figure 2: Diagram of a minimal width neural network R ! R with L = 5
layers of active neurons (blue circles) and node descriptor (1, 1, 1, 1, 1).

Figure 3: Diagram of a fully connected neural network R2 ! R2 with L = 3
layers of active neurons (blue circles) and node descriptor (2, 4, 3, 2)

2.1 Structure of neural network

Notation: input vector x = z0 of size N0 (number of input features). Output
vector z = zL of size K = NL (number of classes) of a neural network with
L layers.

State of network within hidden layer `: variable z` of size N`.
Initialization: z0 = x
Layer-to-layer propagation for ` = 1, . . . , L with intermediate input vari-

able z`�1 2 RN`�1 , output variables y`, z` 2 RN` and linear network param-
eters W` 2 RN`�1⇥N` and b` 2 RN` .

y` = W`z`�1 + b` (1)
z` = max(y`, 0) (2)

The first step described by (14) is the application of a linear transformation
to the output z`�1 from the previous layer followed by the addition a bias b`.
The transformation is encoded in the matrix W` of size N` ⇥N`�1. Note
that the bias may also be encoded in terms of linear weights that are applied
to a constant input common to all layers—structurally, this is equivalent to
augmenting the matrix W` by one line and including the (dummy) constant
1 as an additional component of z`. The bottom line is that this part of
the processing is intrinsically linear and parametrized by the parameters W`

and b`, which are learned during the training of the network.
Equation (5) describes the so-called rectifier unit (ReLU), which amount

to transmitting the coefficients that are positive and suppressing the oth-
ers. This module is essential since it constitutes the non-linear part of the
architecture.

2

General multivariate linear operator (for fully connected layer)

Tlin : RM ! RN with Tlin{x} = Wx where W 2 RN⇥M

Pointwise nonlinearity = activation function of neuron

Tacti : R ! R with Tacti{x} = �(x+ b), b 2 R

6-

Convolutional layer

9

Patch extraction operator: `2(Zd)⇥ Zd ! RM with M = #W

Vect(f [·],k) = fW [k] = (f [k � k0])k02W

Implementation of N channel convolution layer:

0

BBB@

�1

⇣
(h1 ⇤ f)[k]

⌘

...

�N

⇣
(hN ⇤ f)[k]

⌘

1

CCCA
= Tpatch(fW [k]) = �

⇣
WfW [k]

⌘

convolution masks pointwise nonlinearities

Typically: �n(x) = ReLU(x� bn)

Convolution layer : `2(Zd) ! `N2 (Zd) with N channels = feature maps

Shared operator Tpatch : RM ! RN

Tpatch(fW [k]) = �
�
WfW [k]

�
where W =

0

BB@

wT
1

...
wT

N

1

CCA and � =

0

BB@

�1 : R ! R
...

�N : R ! R

1

CCA

N channels (feature maps)

6-10

convolution tensors pointwise nonlinearities

Tensor patch extraction: `N1
2 (Zd)⇥ Zd ! RM⇥N1 with M = #W

Tensor(f [·],k) = F [k] = (fi[k � k0])k02W, i2{1,...,N1}

Vector-valued convolution layer : `N1
2 (Zd) ! `N2

2 (Zd)

Shared operator Ttensor : RM⇥N1 ! RN2

Ttensor(F [k]) = �
�
WF [k]

�
where W =

0

BB@

wT
1

...
wT

N2

1

CCA and � =

0

BB@

�1 : R ! R
...

�N2 : R ! R

1

CCA

Vector-valued convolutional layer (tensor)

= �
⇣
(H ⇤ f)[k]

⌘
with H[·] = N2 ⇥N1 array of filters

N2 channels

feature map

N1 input

channels

Input feature map: f [·] = (f1[·], . . . , fN1 [·])

6-

Convolution of vector-valued images

11

Input feature map: f [·] =

0

BB@

f1[·]
...

fN [·]

1

CCA

Matrix-valued filter: H[·] =

0

BB@

h1,1[·] h1,2[·] . . . h1,N [·]
...

...
...

hM,1[·] h1,2[·] . . . hM,N

1

CCA

Vector-valued filterbank: `N2 (Zd) ! `M2 (Zd)

(H ⇤ f)[·] =

0

BB@

(h1,1 ⇤ f1)[·] + (h1,2 ⇤ f2)[·] + · · ·+ (h1,N ⇤ fN)[·]
...

(hM,1 ⇤ f1)[·] + (hM,2 ⇤ f2)[·] + · · ·+ (hM,N ⇤ fN)[·]

1

CCA

M channels

feature map

N input

channels

6-

Composition

12

On spline activation functions

Michael Unser⇤

March 19, 2019

Abstract

1 Introduction

Figure 1: Diagram of a fully connected neural network R4 ! R2 with L = 5
layers of active neurons (blue circles) and node descriptor (4, 5, 4, 2, 3, 2).

The architecture of a conventional deep neural network is specified by its
node descriptor (N0, N1, . . . , NL) where L is the total number of layers (depth
of the network) and N` is the number of neurons at the `th layer. The action
of a (scalar) neuron (or node) indexed by (n, `) is described by the relation

x 7! �(wT
n,`x� bn,`) (1)

where x 2 RN`�1 denotes the multivariate input of the neuron, � : R ! R is a
predefined activation function (such as a sigmoid or a ReLU), wn,` 2 RN`�1 a
set of linear weights, and bn,` 2 R an additive bias. The outputs of layer ` are
then fed as inputs of layer (`+ 1), and so forth for ` = 1, . . . , L.

The structure of a deep-spline network is essentially the same as above,
except that the activation function is allowed to vary on a neuron-by-neuron

⇤
Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), CH-1015

Lausanne, Switzerland

1

T2 � T1 : X1 ! X3 with T2 � T1{x} = T2

�
T1{x}

Deep neural network
fdeep(x) = (�L �AL � �L�1 � · · · � �2 �A2 � �1 �A1) (x)

Pointwise nonlinearities �` : RN` ! RN`

�`(x) =
�
�(x1), . . . ,�(xN`)

�
with common activation fonction � : R ! R

Composition of T1 : X1 ! X2 and T2 : X2 ! X3

Affine layers A` : RN`�1 ! RN`

A`(x) = W`x+ b` with trainable weight matrix W` 2 RN`⇥N`�1 and bias b` 2 RN`

Series of (nonlinear) operators T` : X` ! Y` where X` and Y` are complete normed vector spaces.

Hypothesis: T` and T`�1 have compatible domain and range; i.e., X` = Y`�1

6-

Composition: Properties

13

Application: Construction of larger receptive fields

Preservation of convolutional structure
T1 and T2 are LSI with impulse responses h1, h2 2 `1(Zd)

) T2 � T1 : f 7! h ⇤ f with h = h2 ⇤ h1 2 `1(Zd)

Preservation of continuity
The composition of two continuous functions is continuous

Preservation of linearity (affiness)
A1 : x 7! W1x+ b1 and A2 : y 7! W2y + b2) A2 �A1 : x 7! (W2W1)x+ (b2 +W2b1)

6-

Pooling

14

x
y

“Weasle”

U-net

Down-sampling: #m{f}[k] = f [mk]

Max pooling: RN ! R
u 7! max(u) = max(u1, . . . , uN)

Up-sampling

"m{f}[k] =

8
<

:
f [n], k = mn

0, otherwise

Up-sampling with repetition

"m{f}[k] = f [k/m]

Softmax: RN ! RN (transforms output of CNN in “probabilities”)

u 7!
�
pk =

exp(uk)PN
n=1 exp(un)

�

6-

Continuity requirements

15

Generic operator T : X ! Y where (X , k·kX) and (Y, k·kY) are complete normed vector spaces.

Definition
The operator T : X ! Y is continuous if limi T{xi} = T{limi xi} = T{x} for any sequence
(xi)i2N that is converging in X with limi xi = x

Counterexample: TLU networks are discontinuous, and therefore very hard to train unless the
architecture is shallow (perceptron).

Lipschitz constant
Lip(T) = L where L is the smallest constant such that the Lipschitz inequality holds.

To avoid instabilities, all modules of a CNN should be Lipschitz continuous.
This implies that they are a.e. differentiable, which is desirable for training with backpropagation.

Definition
The operator T : X ! Y is Lipschitz continuous if there exists a constant L > 0 such that
kT{x1}� T{x2}kY  Lkx1 � x2kX for any x1, x2 2 X .

6-

Lipschitz constant of primary modules

16

Pointwise nonlinearity

� : R ! R where � is differentiable

Lip(�) = sup
x2R

����
d�(x)

dx

���� = k�0kL1 (cf. Mean Value Theorem)

LSI operator (convolution channel)

TLSI(f) = h ⇤ f where h 2 `1(Zd)

Lip(TLSI) = Hmax = sup
!2[0,⇡]d

��H(ej!)
��  khk`1

Example: Lip(ReLU) = supx2R |u(x)| = 1

x

x

Heaviside

Justification (Parseval)

kh ⇤ f � h ⇤ gk2`2 = kh ⇤ (f � g)k2`2 =
1

(2⇡)d

Z

[0,⇡]d
|H(ej!)|2

��F (ej!)�G(ej!)
��2 d!

 H
2
max

(2⇡)d

Z

[0,⇡]d

��F (ej!)�G(ej!)
��2 d! = H

2
maxkf � gk2`2

6-

Lipschitz constant of primary modules (cont’d)

17

Estimation by power method: For k = 0, . . . ,K

uk = 1
kAT(Auk)k2

AT(Auk)

Upon convergence, u = limk uk is the dominant eigenvector of ATA.

Finally, ⇢(A) =
p
(Au)T(Au)

Linear (resp. affine) transform
Tlin : RM ! RN with x 7! Ax (linear)

or x 7! Ax+ b (affine) where A 2 RM⇥N ,b 2 RM

Imposing Lip-1 layer by spectral normalization

Tnormal{x} = 1
⇢(A)Ax

Lip(Tlin) = sup
kxk21

kAxk2 = ⇢(A) (spectral norm = largest singular value of A)

6-

Stability and combination of modules

18

Composition
Lip(T1) = L1 & Lip(T2) = L2) Lip(T2 � T1)  L2L1

Linear combination

Lip
� IX

i=1

aiTi

�


IX

i=1

|ai|Lip(Ti) (by triangle inequality)

 Deeper networks tend to be less stable

Deep neural network with Lip-1 activations (e.g., ReLU) :

fdeep(x) = (�L �AL � �L�1 � · · · � �2 �A2 � �1 �A1) (x)

T1 T2

a2T2

a1T1

+
(a1T1 + a2T2){x}

x

x

T1
0

BB@

T1{x}
...

TN{x}

1

CCA
...

TN
Lip(T) 

q
L2
1 + . . . L2

N  L1 + · · ·+ LN

8f, g 2 X1 :
��T2 � T1{f}� T2 � T1{g}

��
Y2

 L2

��T1{f}� T1{g}
��
Y1=X2

 L2L1kf � gkX1

) Lip(fdeep) =
LY

`=1

⇣ 1z }| {
Lip(�`) Lip(A`)

⌘

Parallel feature maps

T =

0

BB@

T1

...
TN

1

CCA : `2(Zd) ! `N2 (Zd)

Unser: Image processing

CNNs in Practice

■Deep learning pipeline

■Denoising

■ Segmentation

196-

6-

Deep Learning Pipeline

20

Training
Pairs of images

raw annotate

Trained model

Inference
Trained

Prediction

raw

Image

6-

Denoising: “Handcrafted” ancestor of Resnet

21

Input LP Denoising

RMSE 17.30 18.19 12.08

PSNR 21.89 dB 21.45 dB 25.01dB

Ground-truth

Input
noisy image

LP

Low-pass
filter Clipping

LP HP HP-clip

HP HP-clip

Output
denoised image

+
- +

-

with respect to ground truth

 noise estimator

6-

Deep CNN for residual image denoisng

22

 Layer Shape Parameters

Input 384 x 384 x 1 0

Conv2D 3x3 + b, ReLU 384 x 384 x 32 320

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9'248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9'248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9'248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9'248

Conv2D 3x3 + b, ReLU 384 x 384 x 1 289

Subtract 384 x 384 x 1 0

Total 37'601

Training CNN
• 20 images (25%) in validation set
• 37’601 parameters (weights and biais)
• Loss function is the MSE
• 80 epochs, batch_size = 16, lr = 0.001
• Global normalization 0/1 0

0.002

0.004

0.006

0.008

0.01

0 20 40 60 80

Training loss
Validation loss

Datasets
• 80 natural graylevel images 384⤬384, artificially degraded by adding noise

Su
bt

ra
ct

32 32 32 32 32 1

In
pu

t

1

DnCNN architecture (residual)

C
on

v
3x

3
Re

LU

C
on

v
3x

3
Re

LU

C
on

v
3x

3
Re

LU

C
on

v
3x

3
Re

LU

C
on

v
3x

3
Re

LU

6-

DnCNN architecture

23

 Layer Shape Parameters

Input 384 x 384 x 1 0

Conv2D 3x3 + b, ReLU 384 x 384 x 32 320

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9248

Conv2D 3x3 + b, ReLU 384 x 384 x 32 9248

Conv2D 3x3 + b, ReLU 384 x 384 x 1 289

Subtract 384 x 384 x 1 0

Total 37601

N channels (feature maps)

First conv layer:

M channels

feature map

N input

channels

Internal conv layers:

Number of learnable parameters: per output channel(3 × 3) × 32 + 1 (bias)

Number of learnable parameters: per output channel(3 × 3) + 1 (bias)

Clean image Noisy image Prediction

Clean image Noisy image Prediction Median
Filter

Gaussian
Filter

Simulation Denoising

0

52

104

156

208

260

0 4 8 12 16 20 24 28 32 36 40

Ground-truth Noisy Denoised

HighPass+
SoftClipping

Gaussian noise σ = 20

Gaussian filter
! = 1

18.23 dB

Median filter

radius = 3

18.45 dB

Noisy image 15.36 dB

Additive Gaussian noise

High-pass filter

Soft Clipping

19.97 dB

Unet (100 epochs)

3 Pooling steps, 32 channels

20.99 dB

Resnet (200 epochs)

5 layers, 32 channels

21.01 dB

Resnet (100 epochs)

3 layers, 16 channels

20.91 dB

Clean image

Ground-truth

Simulation

6-

Segmentation: “Handcrafted” texture discriminator

26

DCT filters (3x3)

Output of DCT filterbank

Feature maps

H1

H2

HN

G!
abs

abs

abs

G!

G!

 N filters nonlinearity aggregation

⇥

⇥

⇥

a1

a2

aN

6-

Popular CNN architecture for image segmentation

27

U-net introduced by Ronneberger in 2015 for biomedical image segmentation

1. https://arxiv.org/abs/1505.04597

Architecture
Winner of ISBI 2015 cell tracking challenge

 Layer Shape Params

Input 512x512x1 0

Conv2D 3x3 512x512x32 320

Conv2D 3x3, Activation 512x512x32 9248

MaxPooling2D 256x256x32 0

Conv2D 3x3, Activation 256x256x64 18496

Conv2D 3x3, Activation 256x256x64 36928

MaxPooling2D 128x128x64 0

Conv2D 3x3, Activation 128x128x128 73856

Conv2D 3x3, Activation 128x128x128 147584

MaxPooling2D 64x64x128 0

Conv2D 3x3, Activation 64x64x256 295168

Conv2D 3x3, Activation 64x64x256 590080

Up-conv 128x128x128 131200

Concatenate 128x128x256 0

Conv2D 3x3, Activation 128x128x128 295040

Conv2D 3x3, Activation 128x128x128 147584

Up-conv 256x256x64 32832

Concatenate 256x256x12 0

Conv2D 3x3, Activation 256x256x64 73792

Activation 256x256x64 0

Conv2D 3x3, Activation 256x256x64 36928

Up-conv 512x512x32 8224

Concatenate 512x512x64 0

Conv2D 3x3, Activation 512x512x32 18464

Conv2D 3x3, Activation 512x512x32 9248

Conv2D 3x3 512x512x2 66

Total 1'925'058

51
2⤬

51
2⤬

1

25
6⤬

25
6⤬

64

12
8⤬

12
8⤬

12
8

64
⤬6

4⤬
25

6

12
8⤬

12
8⤬

12
8

C
on

v
3x

3

Re
LU

In
pu

t

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

↓2

↓2

↑2

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

↑2

↑2

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

↓2

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

↓2

25
6⤬

25
6⤬

64

C
on

v
3x

3

Re
LU

C
on

v
3x

3

Re
LU

C
on

v
3x

3

↑2

C
on

ca
t

C
on

ca
t

C
on

ca
t

Max pooling

Up-conv

512⤬512⤬32

51
2⤬

51
2⤬

2

64
⤬6

4⤬
25

6

Skip connection

U-Net Architecture

512⤬512⤬32

512⤬512⤬1
Graylevel

image

512⤬512⤬2
2 classes

0: background
1: cell

For “semantic” segmentation

0
0.2
0.4
0.6
0.8

0 10 20 30 40 50 60 70 80 90 100

Training loss
Validation loss

Training CNN
• 66 annotated images / 25% for validation
• 1’925’058 parameters (weights and bias)
• Loss function is the binary cross entropy
• 100 epochs, batch_size = 16, lr = 0.001

Datasets
• 66 graylevel images (1 channel)
• 66 manually annotated images, 2 classes

Raw input image

Annotated
image

Probability

of class 1

Prediction of
class 1

Results of segmentation

GT (green) Pred (red)

Ground-truth

= IoU = 0.91 (Jaccard)Prediction

p>0.5

10 test set

6-

CONCLUSION: The Pros and Cons of CNNs

30

■ Training and fine-tuning is fastidious “Graduate-student descent ….”

■ Advantages of (deep) CNNs
■ Are sufficiently flexible to implement most image-processing tasks
■ Can benefit from hardware acceleration (GPU)
■ Performance of deep CNNs is often spectacular
■ Once trained, they are very fast to deploy (inference)

1732
172■ While the individual components are simple, 

the global behaviour is poorly understood ⇒ lack of guarantees

■ Downsides of CNNs
■ Require huge amounts of data and computation for training

■ No free lunch: Trained CNNs are very task/data specific

■ Can behave erratically — lack of robustness, subject to adversarial attacks

■ How the new trend benefits from the techniques of “traditional” IP

On instabilities of deep learning in image

reconstruction and the potential costs of AI

Vegard Antuna , Francesco Rennab , Clarice Poonc , Ben Adcockd , and Anders C. Hansena,e,1

a Department of Mathematics, University of Oslo, 0316 Oslo, Norway; b Instituto de Telecomunicações, Faculdade de Ciências, Universidade do Porto, Porto

4169-007, Portugal; c Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom; d Department of Mathematics, Simon Fraser

University, Burnaby, BC V5A 1S6, Canada; and e Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3

0WA, United Kingdom

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved March 12, 2020 (received for review June 4, 2019)

Deep learning, due to its unprecedented success in tasks such as

image classification, has emerged as a new tool in image recon-

struction with potential to change the field. In this paper, we

demonstrate a crucial phenomenon: Deep learning typically yields

unstable methods for image reconstruction. The instabilities usu-

ally occur in several forms: 1) Certain tiny, almost undetectable

perturbations, both in the image and sampling domain, may

result in severe artefacts in the reconstruction; 2) a small struc-

tural change, for example, a tumor, may not be captured in the

reconstructed image; and 3) (a counterintuitive type of instability)

more samples may yield poorer performance. Our stability test

with algorithms and easy-to-use software detects the instability

phenomena. The test is aimed at researchers, to test their net-

works for instabilities, and for government agencies, such as the

Food and Drug Administration (FDA), to secure safe use of deep

learning methods.

instability | deep learning | AI | image reconstruction | inverse problems

There are two paradigm changes currently happening: 1)

Artificial intelligence (AI) is replacing humans in problem

solving; however, 2) AI is also replacing the standard algo-

rithms in computational science and engineering. Since reliable

numerical calculations are paramount, algorithms for compu-

tational science are traditionally based on two pillars: accuracy

and stability. This is, in particular, true of image reconstruction,

which is a mainstay of computational science, providing funda-

mental tools in medical, scientific, and industrial imaging. This

paper demonstrates that the stability pillar is typically absent

in current deep learning and AI-based algorithms for image

reconstruction. This raises two fundamental questions: How reli-

able are such algorithms when applied in the sciences, and do

AI-based algorithms have an unavoidable Achilles heel: instabil-

ity? This paper introduces a comprehensive testing framework

designed to demonstrate, investigate, and, ultimately, answer

these foundational questions.

The importance of stable and accurate methods for image

reconstruction for inverse problems is hard to overestimate.

These techniques form the foundation for essential tools across

the physical and life sciences such as MRI, computerized tomog-

raphy (CT), fluorescence microscopy, electron tomography,

NMR, radio interferometry, lensless cameras, etc. Moreover, sta-

bility is traditionally considered a necessity in order to secure

reliable and trustworthy methods used in, for example, cancer

diagnosis. Hence, there is an extensive literature on designing

stable methods for image reconstruction in inverse problems

(1–4).
AI techniques such as deep learning and neural networks (5)

have provided a new paradigm with new techniques in inverse

problems (6–15) that may change the field. In particular, the

reconstruction algorithms learn how to best do the reconstruction

based on training from previous data, and, through this train-

ing procedure, aim to optimize the quality of the reconstruction.

This is a radical change from the current state of the art (SoA)

from an engineering, physical, and mathematical point of view.

AI and deep learning have already changed the field of com-

puter vision and image classification (16–19), where the perfor-

mance is now referred to as super human (20). However, the

success comes with a price. Indeed, the methods are highly unsta-

ble. It is now well established (21–25) that high-performance

deep learning methods for image classification are subject to fail-

ure given tiny, almost invisible perturbation of the image. An

image of a cat may be classified correctly; however, a tiny change,

invisible to the human eye, may cause the algorithm to change its

classification label from cat to fire truck, or another label far from

the original.

In this paper, we establish the instability phenomenon of

deep learning in image reconstruction for inverse problems. A

potential surprising conclusion is that the phenomenon may be

independent of the underlying mathematical model. For exam-

ple, MRI is based on sampling the Fourier transform, whereas

CT is based on sampling the Radon transform. These are rather

different models, yet the instability phenomena happen for both

sampling modalities when using deep learning.

There is, however, a big difference between the instabilities of

deep learning for image classification and our results on insta-

bilities of deep learning for image reconstruction. Firstly, in the

former case, there is only one thing that could go wrong: A small

perturbation results in a wrong classification. In image recon-

struction, there are several potential forms of instabilities. In

particular, we consider three crucial issues: 1) instabilities with

respect to certain tiny perturbations, 2) instabilities with respect

to small structural changes (for example a brain image with

or without a small tumor), and 3) instabilities with respect to

changes in the number of samples. Secondly, the two problems

are totally unrelated. Indeed, the former problem is, in its sim-

plest form, a decision problem, and hence the decision function

(“Is there a cat in the image?”) to be approximated is necessarily

This paper results from the Arthur M. Sackler Colloquium of the National Academy of

Sciences, ”The Science of Deep Learning,” held March 13–14, 2019, at the National

Academy of Sciences in Washington, DC. NAS colloquia began in 1991 and have been

published in PNAS since 1995. From February 2001 through May 2019 colloquia were

supported by a generous gift from The Dame Jillian and Dr. Arthur M. Sackler Foun-

dation for the Arts, Sciences, & Humanities, in memory of Dame Sackler’s husband,

Arthur M. Sackler. The complete program and video recordings of most presenta-

tions are available on the NAS website at http://www.nasonline.org/science-of-deep-

learning.y

Author contributions: B.A. and A.C.H. designed research; V.A., F.R., and C.P. performed

research; V.A., F.R., C.P., B.A., and A.C.H. wrote the paper; and V.A., F.R., and C.P. wrote

code.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y

Data deposition: All of the code is available from GitHub at https://github.com/vegarant/

Invfool.y

1 To whom correspondence may be addressed. Email: ach70@cam.ac.uk.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/

doi:10.1073/pnas.1907377117/-/DCSupplemental.y

First published May 11, 2020.

30088–30095 | PNAS | December 1, 2020 | vol. 117 | no. 48

www.pnas.org/cgi/doi/10.1073/pnas.1907377117

Do
wn

lo
ad

ed
 a

t E
PF

L
Li

br
ar

y
on

 J
un

e
30

, 2
02

1

PNAS December 2020

AI Moore’s law: doubling every 3.4 month !

■ Deeper understanding of modules ■ Suggestion of leaner and more robust architectures

